
MINLP	solved	by	Outer	Approximation	(OA)
Initialization

Approximation MIP

Solve MIP for LB

Solve SLP ACOPF for UB

Feasible

Gap<

Add Constraints 
to Refine MIP

Fix binary

Done
Yes

No

No

Yes Local Solution [R2]
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CONTRIBUTIONS
GLOBAL	SOLUTION	METHOD



ACOPF	Second-Order	Cone	Relaxation§(SOCR)

18

§ Second-Order Cone Relaxation (Jabr, 2006; Kocuk, 2015)

KVL-based constraints (next slide)



Improving	the	Lower	Bound	of	SOCR	[R3]
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Cycle Constraints:
the sum of angle differences on 
each cycle equals to zero

G2

G1

G3

B1 B2

B3

θB1,B2,t

θB3,B1,t

θB2,B3,t

Convex Relaxation of arctan: 
(PW)Linear Over- and Under-Estimators
Optimality-Based Bound Tightening (OBBT)
Gradually Adding Cycle Constraints



Global	ACOPF	Performance
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Initialization

Relaxation MIP

Solve MIP for LB

Solve NLP ACOPF for UB

Feasible

Gap<

Add Constraints 
to Refine MIP

Fix binary

Done
Yes

No

No

Yes

Solving nonlinear, 
non-convex AC OPF 
to global optimality?✔

MINLP	solved	by	Outer	Approximation	(OA)

Global Solution [R4]
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CONTRIBUTIONS
UC+ACOPF	RESULTS
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118 nodes
54 generators
91 loads
186 network elements/lines
24-hour hourly commitment

Cost ($) AC Feasible?
UC 811,658 (base) NO

UC+DCOPF 814,715 
(+0.4%)

NO

Local
UC+ACOPF

843,591 
(+3.9%)

YES

UC+DCOPF+RUC 844,922 
(+4.1%)

YES

Global
UC+ACOPF

835,926
(+3.0%)

YES

§ Key	Takeaway:	Results	indicate	considerable	divergence	between	the	
market	settlements	and	stability/reliability	requirements

§ Data from Fu et al. (2006)



Computational	Results	(Local	Method)

§ Most	of	the	OA	algorithm	time	spent	in	the	MILP	(MIP	gap	tolerance	0.1%)
§ UC+ACOPF:	5x-15x	slower	than	the	UC+DCOPF
§ UC+DCOPF+RUC:	1.5x-5x	slower	than	the	UC+DCOPF

10 piecewise linear segments, relative MIP gap tolerance 0.1%
UC UC+DCOPF UC+ACOPF UC+DCOPF+RUC

MILP MILP MILP SLP MILP SLP
Solution Time (s)
6-Bus 0.13 0.21 0.88(3) 0.07(50) 1.02(1, 1) 0.06(33)
RTS-79 1.86 6.76 88.71(3) 0.75(36) 10.37(1, 2) 0.45(26)
IEEE-118 5.04 21.42 110.17(2) 5.06(46) 57.2(1, 1) 3.71(33)

Cost ($)
6-Bus 101, 270 106, 987 101, 763 102, 523
RTS-79 823, 145 823, 894 895, 281 896, 169
IEEE-118 811, 658 814, 715 843, 591 844, 922
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Local	v.	Global	UC+ACOPF	Method

Case Problem 
Formulation

Upper 
Bound

Lower 
Bound

Relative 
Gap (%)

CPU Time 
(s)

6-Bus
Global
Local

101,763
101,763

101,655
-

0.11%
0.11%

3.6
0.95

RTS-79
Global
Local

895,096
895,281

893,967
-

0.13%
0.15%

266.4
89.46

IEEE-118
Global
Local

835,926
843,591

833,057
-

0.34%
1.25%

8480
115.23

§ Note:	Thermal	limits	different	in	global	solution	method	(apparent	power	
thermal	limit)	and	local	solution	method	(current	thermal	limit)	so	a	direct	
comparison	(above)	is	inexact

§ On	the	largest	test	case,	the	approximation	method	is	over	70x	faster,	at	the	cost	
of	0.91%	in	relative	optimality	gap	change
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ONGOING	WORK



Ongoing	Work

§ Study	of	global	solution	techniques	applied	to	the	PSV,	RSV	and	
RIV	ACOPF	formulations

§ Implications	on	market	settlements	for	including	AC	network	
constraints	in	the	day-ahead

§ Improving	the	performance	of	the	MIP	solution	time	in	the	OA	
algorithm	(e.g.,	hybrid	OA	+	branch-and-bound)

§ Comparing	the	fidelity	and	computational	performance	to	
current	market	practices	on	larger	scale,	more	realistic	
networks	(GRIDDATA)
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